This master function calibrates MetaRVM model parameters using one of several available optimization methods.
Usage
calibrate_metaRVM(
config,
params_to_infer,
ground_truth,
method,
settings = list()
)Arguments
- config
A
MetaRVMConfigobject or a path to a YAML configuration file.- params_to_infer
A named list defining the parameters to be estimated, including their bounds and starting values.
- ground_truth
A
data.tablecontaining observational data.- method
The optimization method to use: "optim" or "DEoptim".
- settings
A list of settings for the chosen optimization method.
Examples
if (FALSE) { # \dontrun{
# This is a conceptual example.
# You would need a valid config object and ground truth data.
# 1. Load or create a configuration object
config <- MetaRVMConfig$new("path/to/your/config.yaml")
# 2. Define ground truth data (example structure)
ground_truth <- data.table(
date = as.Date("2023-01-10"),
age = "18+",
disease_state = "I_symp",
value = 150
)
# 3. Define parameters to infer with bounds and start values
params_to_infer <- list(
ts = list(lower = 0.1, upper = 0.9, start = 0.5),
pea = list(lower = 0.2, upper = 0.8, start = 0.4)
)
# 4. Calibrate using the 'optim' method
optim_results <- calibrate_metaRVM(
config = config,
params_to_infer = params_to_infer,
ground_truth = ground_truth,
method = "optim",
settings = list(method = "L-BFGS-B", control = list(maxit = 100))
)
print(optim_results)
# 5. Calibrate using the 'DEoptim' method
deoptim_results <- calibrate_metaRVM(
config = config,
params_to_infer = params_to_infer,
ground_truth = ground_truth,
method = "DEoptim",
settings = list(itermax = 50)
)
print(deoptim_results)
} # }
